Department

Home
Department of Structural Mechanics and Computer Aided Engineering
Analysis of a reinforced concrete dome PDF Print E-mail
P. Czumaj, S. Dudziak and Z. Kacprzyk, Analysis of a reinforced concrete dome, RSP 2020, IOP Conference Series: Materials Science and Engineering, Volume 1015, XXIX R-P-S Seminar 2020 November 2020, Wroclaw, Poland, DOI: 10.1088/1757-899x/1015/1/012006
on-line>>

Abstract
FEM models of axi-symmetrical reinforced concrete dome with two rings have been analysed. Different complexity level of computational models (2D and 3D), geometry simplifications and FEM codes (Abaqus, FEAS, ARSAP) have been compared. Assessment of building structure deflections has been performed with several approaches, which gave opportunity to confront them and estimate mistakes of most commonly used models.
 
Laury Buildera 2020 dla dwóch pracowników PW PDF Print E-mail
Wyróżnienia otrzymali dr inż. Ireneusz Czmoch z Wydziału Inżynierii Lądowej oraz mgr inż. arch. Paweł Przybyłowicz z Wydziału Architektury. https://pw.edu.pl/Aktualnosci/Laury-Buildera-2020-dla-dwoch-pracownikow-PW


BUILDER AWARDS – LAUREACI 2020. Pełna lista laureatów>>
 
Optimum design of elastic moduli for the multiple load problems PDF Print E-mail
T. Lewiński, Optimum design of elastic moduli for the multiple load problems,  Archives of Mechanics vol. 73 (1), pp 27-66, 2021,
 DOI: 10.24423/aom.3607
https://am.ippt.pan.pl/am/article/view/3607

Abstract
The paper deals with minimization of the weighted average of compliances of structures, made of an elastic material of spatially varying elasticity moduli, subjected to n load variants acting non-simultaneously. The trace of the Hooke tensor is assumed as the unit cost of the design. Three versions of the free material design are discussed: designing the moduli of arbitrary anisotropy (AMD), designing the moduli of an isotropic material (IMD), designing of Young’s modulus for a fixed Poisson ratio (YMD). The problem is in all cases reduced to the Linear Constrained Problem (LCP) of Bouchitté and Fragalà consisting of two mutually dual problems: stress based and strain based, the former one being characterized by the integrand of linear growth depending on the trial statically admissible stresses. The paper shows equivalence of the stress fields solving the (LCP) problem and those appearing in the optimal body subjected to subsequent load cases.

 
On incorporating warping effects due to transverse shear and torsion into the theories of straight elastic bars PDF Print E-mail
T. Lewiński, S.Czarnecki, On incorporating warping effects due to transverse shear and torsion into the theories of straight elastic bars, Acta Mech (2020).

https://doi.org/10.1007/s00707-020-02849-7

Abstract
By endowing El Fatmi’s theories of bars with first-order warping functions due to torsion and shear, a family of theories of bars, of various applicability ranges, is effectively constructed. The theories thus formed concern bars of arbitrary cross-sections; they are reformulations of the mentioned theories by El Fatmi and theories by Kim and Kim, Librescu and Song, Vlasov and Timoshenko. The Vlasov-like theory thus developed is capable of describing the torsional buckling and lateral buckling phenomena of bars of both solid and thin-walled cross-sections, which reflects the non-trivial correspondence, noted by Wagner and Gruttmann, between the torsional St.Venant’s warping function and the contour-wise defined warping functions proposed by Vlasov. Moreover, the present paper delivers an explicit construction of the constitutive equations of Timoshenko’s theory; the equations linking transverse forces with the measures of transverse shear turn out to be coupled for all bars of asymmetric cross-sections. The modeling is hierarchical: the warping functions are numerically constructed by solving the three underlying 2D scalar elliptic problems, providing the effective characteristics for the 1D models of bars. The 2D and 1D problems are indissolubly bonded, thus forming a unified scientific tool, deeply rooted in the hitherto existing knowledge on elasticity of elastic straight bars.
 
Projektowanie w procesie BIM PDF Print E-mail
Zbigniew Kacprzyk, Projektowanie w procesie BIM, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2020, ISBN 978-83-8156-117-4.

Projektowanie w procesie BIMCelem monografii jest przybliżenie zagadnień BIM szczególnie na etapie przygotowania projektu. Podstawy teoretyczne pozwolą na lepsze zrozumienie systemów CAD wykorzystywanych w procesie BIM. W przypadku wykorzystania systemów obliczeniowych (CAE) brak podstaw teoretycznych jest po prostu niebezpieczny dla konstruktora.
Model cyfrowy obiektu zawiera model geometryczny, informacje fizyczne o materiałach, informacje techniczne (aprobaty, cykle przeglądów itp.), harmonogramy, wyceny robót budowlanych, organizację placu budowy, harmonogramy dostaw materiałów, zarządzanie całym cyklem życia obiektu i wiele innych informacji wytwarzanych w czasie realizacji przedsięwzięcia.

BIM jako koncepcja wciąż się rozwija, definicje, które można napotkać w dostępnej literaturze różnią się. Różnią się też podejścia do BIM-u w różnych krajach.

pdfSpis treści>>


 
Optimal archgrids spanning rectangular domains PDF Print E-mail
Grzegorz Dzierżanowski, Radosław Czubacki, Optimal archgrids spanning rectangular domains, Computers and Structures, volume 242 (1 January 2021), article 106371
https://doi.org/10.1016/j.compstruc.2020.106371

Abstract
The theory of archgrids of minimal weight has been formulated in the late 1970s and recently reconsidered by means of duality theory in the calculus of variations. In the current study, we follow this approach by putting forward an efficient computational scheme. Trial functions for both primal and dual problems are decomposed in two function bases: trigonometric (Fourier) and polynomial (Legendre). Our focus is on structures composed of arches forming a rectangular grid, i.e. running in two mutually perpendicular directions and spanning a given rectangular domain. In the course of discussion, we show that the numerical algorithm is quickly convergent, CPU time efficient, and robust. In particular, it provides clear-cut solutions in which optimal parts of a structure are sharply distinguished from the non-optimal, hence redundant, ones.
 
<< Start < Prev 1 2 3 4 5 6 7 8 9 10 Next > End >>

Page 3 of 22

Department seminars

No current events.

<<  August 2021  >>
 Mo  Tu  We  Th  Fr  Sa  Su 
        1
  2  3  4  5  6  7  8
  9101112131415
16171819202122
23242526272829
3031     

Conferences

No current events.

Books

MichellStructures-m.png

Z galerii Katedry

Home
We have 187 guests online

Statistics

Content View Hits : 2572302