Department of Structural Mechanics and Computer Aided Engineering
Recovery of the Auxetic Microstructures Appearing in the Least Compliant Continuum Two-Dimensional Bodies PDF Print E-mail
Sławomir Czarnecki, Tomasz Łukasiak, Recovery of the Auxetic Microstructures Appearing in the Least Compliant Continuum Two-Dimensional Bodies, Physica Status Solidi (b) 1900676, 2020 (16 stron)
sc tl m
Available on line(>>

The article discusses the 2D problem of manufacturability of the minimum compliance designs of the structural elements made of inhomogeneous materials of local isotropic or square symmetry properties. The available isotropic material design (IMD) and cubic material design (CMD) methods deliver the optimal distribution of the elastic moduli within the design domain. Within the 2D setting, the cubic symmetry reduces to the symmetry of a square. The varying underlying microstructures corresponding to the optimal designs are recovered by matching the values of the optimal moduli with the values of the effective moduli of the representative volume elements (RVEs) computed by the asymptotic homogenization method for periodic media. The shape of the RVE and its internal symmetries are properly selected providing assumed isotropy or symmetry of a square of the homogenized constitutive tensor. The microstructure topology is described by parametric description of single (or several) fibers in RVE. The periodicity of the structure and the final topology of the material within RVE is ensured by multiplication of a single fiber in accordance with the symmetries adopted for RVE. The ability to model an auxetic behavior within the subdomains where the optimal Poisson's ratio assumes negative values is shown.
Michell structures within L-shaped domains PDF Print E-mail
K. Bołbotowski, T. Lewiński, T. Sokół, Michell structures within L-shaped domains, Computer Assisted Methods in Engineering and Science (CAMES),2020

on line:

By recalling the main mathematical results concerning the theory of Michell structures, the present paper puts forward an interpretation of the selected numerical methods for constructing their approximants, that is, trusses with a large number of nodes. The efficiency of one of these methods: the ground structure method in its adaptive version is shown in the context of the L-shaped design domain problem. A large family of highly accurate truss approximants corresponding to the point loads acting at selected vertices is constructed and discussed.
Optimal archgrids: a variational setting PDF Print E-mail
R. Czubacki, T. Lewiński, Optimal archgrids: a variational setting, Structural and Multidisciplinary Optimization 2020,

The paper deals with the variational setting of the optimal archgrid construction. The archgrids, discovered by William Prager and George Rozvany in 1970s, are viewed here as tension-free and bending-free, uniformly stressed grid-shells forming vaults unevenly supported along the closed contour of the basis domain. The optimal archgrids are characterized by the least volume. (...)

on-line >>

Ś.P. Krzysztof Zbigniew Hetmański (1958-2020)-wspomnienie PDF Print E-mail
phoca thumb s sem kh00Krzysztof Hetmański urodził się 24 października 1958 r. Obdarzony wybitną inteligencją lecz naznaczony przez los słabym zdrowiem, w czasie studiów (lata 1976-1980) na Wydziale Inżynierii Lądowej wielokrotnie chorował. Ze względu na bardzo zły stan zdrowia przerwał studia na jesieni 1980 r. na początku semestru dyplomowego a następnie kilka razy wznawiał a potem znów rezygnował. Mimo nękających Go chorób Krzysztof uzyskał w 1988 r. stopień magistra inżyniera budownictwa (specjalność Konstrukcje Budowlane i Inżynierskie, specjalizacja: Teoria Konstrukcji) na podstawie pracy magisterskiej pt.:
Uściślony trójkątny element skończony płyty o średniej grubości. Promotorem był Andrzej Gomuliński (wówczas docent PW) a konsultantem Wojciech Gilewski (wówczas adiunkt PW). Recenzję opracował prof. Zbigniew Kączkowski. W pracy tej Krzysztof znalazł błąd merytoryczny w budowie elementu trójkątnego płytowego zaproponowanego przez prof. Kączkowskiego i zaproponował własną wersję tego elementu. Niestety, wyniki tej pracy nie zostały opublikowane.
Higher order weighted Sobolev spaces on the real line for strongly degenerate weights. Application to variational problems in elasticity of beams PDF Print E-mail
Karol Bołbotowski, Higher order weighted Sobolev spaces on the real line for strongly degenerate weights. Application to variational problems in elasticity of beams,
Journal of Mathematical Analysis and Applications, vol 488, 2020, str 58,

Optimal archgrids revisited: variational approach and numerical methods PDF Print E-mail
T. Lewiński, R. Czubacki, G. Dzierżanowski, T. Sokół, Optimal archgrids revisited: variational approach and numerical methods. pp 196-201 in: Xu Guo and Hai Huang, Eds. Advances in Structural and Multidisciplinary Optimization, Proceedings of the 13th World Congress of Structural and Topology Optimization (WCSMO 13). Dalian University of Technology Electronic & Audio-visual Press. Dalian, 2019; ISBN: 978-7-89437-207-9.


<< Start < Prev 1 2 3 4 5 6 7 8 9 10 Next > End >>

Page 4 of 21

Department seminars

No current events.

<<  September 2021  >>
 Mo  Tu  We  Th  Fr  Sa  Su 
    1  2  3  4  5
  6  7  8  9101112


No current events.



Z galerii Katedry

We have 162 guests online


Content View Hits : 2553064